Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions
نویسندگان
چکیده
The colloidal stability of surfactant-dispersed single-wall carbon nanotubes (SWCNTs) is determined by microscopic physicochemical processes, such as association, partitioning, and adsorption propensities. These processes can be controlled by the addition of solutes. While the effects of cations on the colloidal stability of SWCNTs are relatively well understood, little is known about the effects of anions. In this study, we examined the effects of anions on the stability of SWCNTs dispersed by sodium dodecyl sulfate (SDS) using sodium salts, such as NaCl and NaSCN. We observed that the intensity of the radial breathing mode Raman peaks rapidly decreased as the salts were added, even at concentrations less than 25 mM, indicating the association of SWCNTs. The effect was stronger with NaSCN than NaCl. We propose that the association of SWCNTs was caused by thermodynamic destabilization of SDS assemblies on SWCNT surfaces by these salts, which was confirmed through SWCNT separation experiments using aqueous two-phase extraction and gel chromatography. These results demonstrate that neutral salts can be used to control the colloidal stability of surfactant-dispersed SWCNTs.
منابع مشابه
Uniform directional alignment of single-walled carbon nanotubes in viscous polymer flow.
In this work, we probed the effects of shear flow on the alignment of dispersed single-walled carbon nanotubes in polymer solutions. Two different systems were compared: Single-walled carbon nanotubes dispersed using an anionic surfactant and single-walled carbon nanotubes dispersed using an anionic surfactant and a weakly binding polymer. It was determined that the addition of the weakly bindi...
متن کاملOptimization Conditions for Single-Walled Carbon Nanotubes Dispersion
The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experiments reveal that the maximum concentration of dispersed SWCNTs corresponds to the maximum UV-vis-NIR absorbance of the solution. With higher surfactant concentration the dispersion r...
متن کاملAlignment of Dispersed Single-walled Carbon Nanotubes in Viscous Polymer Flow
This research describes the effects of shear flow-induced alignment of dispersed single-walled carbon nanotubes in viscous polymer solutions and the application of this alignment strategy to produce epoxy-based composites with superior mechanical properties. Previously, it was shown that the use of an anionic surfactant (i.e. sodium dodecylbenzene sulfonate, NaDDBS) in conjunction with a weakly...
متن کاملEffects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions.
We examine the Breit-Wigner-Fano (BWF) line shape in the Raman spectra of carbon single-wall nanotubes (SWNTs) dispersed in aqueous suspensions. Bundling and electronic effects are studied by comparing undoped SWNTs (C-SWNTs) to boron-doped nanotubes (B-SWNTs) in a variety of different surfactant solutions. For SWNTs dispersed with nonionic surfactants that are less effective in debundling than...
متن کاملAdsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes.
The aggregation and dispersion behaviors of carbon nanotubes (CNTs) can regulate the environmental spread and fate of CNTs, as well as the organic pollutants adsorbed onto them. In this study, multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) were surface modified with humic acids from different sources and with surfactants of different ionic types. The dispersion...
متن کامل